LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2025

PST 2503 - SAMPLING THEORY

Date: 29-04-2025	Dept. No.	Max. : 100 Marks

Time: 01:00 PM - 04:00 PM

SECTION A

Answer ANY FOUR of the following

 $4 \times 10 = 40 \text{ Marks}$

- 1. Provide an example problem and prove that more than one unbiased estimator can exist for a given sampling design.
- 2. Examine whether $T_1(s) = \frac{1}{n(s)}$ $\sum_{i \in s} Y_i$ and $T_2(s) = [\max_{i \in s} \{Y_i\} + \min_{i \in s} \{Y_i\}] / 2$ are unbiased for \overline{Y} under the sampling design, $P(s) = \begin{cases} \frac{1}{4} & \text{if } n(s) = 3\\ 0 & \text{otherwise} \end{cases}$. Given $Y_1 = 7$, $Y_2 = 3$, $Y_3 = 4$, and $Y_4 =$
- 3. For any sampling design P(.), show that:

a)
$$E_P[I_i(s)] = \pi_i$$
; $i = 1, 2, ..., N$. (5)

b)
$$E_P[I_i(s)] = \pi_{ij}$$
; $i, j = 1, 2, ..., N$; $i \neq j$. (5)

- 4. Explain Random Group Method in detail. Also, prove that an unbiased estimator of Y under random group method is $\hat{Y}_{RG} = \sum_{i=1}^{n} \frac{y_i}{x_i} T_x(i)$.
- 5. For any fixed size sampling design P(.), prove that

a.
$$\sum_{j=1}^{N} \pi_{ij} = (n-1) \pi_i$$
; $i = 1, 2, ..., N$; $j \neq i$
b. $\sum_{j=1}^{N} (\pi_i \pi_j - \pi_{ij}) = \pi_i (1 - \pi_i)$; $i = 1, 2, ..., N$; $j \neq i$ (6)

b.
$$\sum_{i=1}^{N} (\pi_i \pi_i - \pi_{ii}) = \pi_i (1 - \pi_i); i = 1, 2, ..., N; j \neq i$$
 (6)

- 6. Explain proportional allocation in Stratified Sampling and deduce $V(\widehat{Y}_{St})$ under this allocation.
- 7. Obtain Hartley Ross unbiased ratio type estimator for population total.
- 8. Show that $\widehat{Y_{LR}}$ is more efficient than $\widehat{Y_R}$ unless $\beta = R$. Also prove that the ratio estimator is a particular case of regression estimator.

SECTION B

Answer ANY THREE of the following

 $3 \times 20 = 60 \text{ Marks}$

- 9. (a) Prove that unbiasedness of an estimator depends on the sampling design. (10)
 - (b) In SRSWOR, show that (10)

(i)
$$\pi_i = \frac{n}{N}$$
; $i = 1, 2, ..., N$, and

(i)
$$\pi_i = \frac{n}{N}$$
; $i = 1, 2, ..., N$, and
(ii) $\pi_{ij} = \frac{n(n-1)}{N(N-1)}$; $i, j = 1, 2, ..., N$ and $i \neq j$.

- 10. Explain in detail Warner's Model and find the estimated variance of $\widehat{\Pi}_A$.
- 11. Describe Hansen-Hurwitz Estimator and show that \hat{Y}_{HHE} is unbiased for Y. Also, show that $v(\hat{Y}_{HHE}) =$ $\frac{1}{n(n-1)}\sum_{i=1}^{n}\left(\frac{y_i}{p_i}-\hat{Y}_{HHE}\right)^2.$
- 12. (a) Describe Simmon's Unrelated Randomized Response Model and estimate the population proportion Π_A when Π_Y is unknown. (12)
 - (b) Describe the linear regression estimation procedure for estimating the population total "Y". (8)
- 13. Under Midzuno sampling Design, show that

 - a. the first order inclusion probability is $\Pi_i = \frac{N-n}{N-1} \cdot \frac{X_i}{X} + \frac{n-1}{N-1}, i=1,2..., N.$ (8) b. the second order inclusion probability is $\Pi_{ij} = \frac{(N-n)(n-1)}{(N-1)(N-2)} \cdot \frac{X_i + X_j}{X} + \frac{(n-1)(n-2)}{(N-1)(N-2)}, i \neq j = 1, 2, ..., N.$ (12)
- 14. (a) Obtain the approximate bias and MSE of the Ratio Estimator. (8)
 - (b) Verify if the Hansen-Hurwitz estimator \hat{Y}_{dhh} under double sampling is unbiased for Y and find $V(\hat{Y}_{dhh})$. (12)

\$\$\$\$\$\$\$\$\$\$\$\$\$